Data Science

Considerada como uma das áreas mais promissoras da atualidade, a Data Science é o estudo e ciência responsável pela captura, armazenamento, processamento e análise de dados. A expansão constante do universo digital permitiu que inúmeras mudanças fizessem parte de nosso cotidiano pessoal e profissional. Dessa forma, a geração diária de dados apresentou crescimento considerável, necessitando de uma área capaz de garantir a segurança e a utilização estratégica das informações produzidas. Logo, a Data Science – ou Ciência de Dados –, trabalha de acordo com esta demanda através das habilidades matemáticas, estatísticas e computacionais do Cientista de Dados, responsável por esta profissão tão indispensável para o mercado atual.

Leia Mais

Mercado de trabalho para Cientista de Dados


Como vimos anteriormente, a Data Science é uma área promissora e essencial para lidar com as mudanças estabelecidas pela transformação digital.

Dessa maneira, o mercado de trabalho para o Cientista de Dados é repleto de opções, já que esta ciência pode ser aplicada em diferentes áreas do conhecimento e em diversos segmentos como:

  • Robótica;

  • Marketing;

  • Computação;

  • Finanças;

  • Inteligência Artificial;

  • Logística;

  • Cibersegurança;

  • Biotecnologia;

  • Saúde, entre outras.

O perfil deste profissional está diretamente ligado à uma mente ativa e curiosa, à facilidade para solucionar problemas e lidar de forma habilidosa com as linguagens de programação, a matemática e a estatística.

Atuações de um profissional de dados


Considerada como uma área multidisciplinar, a Data Science também permite que inúmeros profissionais de dados façam parte dos projetos relacionados a esta ciência.

Dentre os principais, vale a pena citarmos:

Engenheiro de Machine Learning

Este profissional é responsável, principalmente, pela pesquisa e desenvolvimento de algoritmos que possam transformar máquinas e computadores em sistemas inteligentes.

O Engenheiro de Machine Learning também permite que tais algoritmos transformem-se em softwares de processamento e automação.

Arquiteto e Engenheiro de Dados 

Enquanto o Arquiteto de Dados é responsável pelo planejamento de determinado banco de dados, o Engenheiro, apesar de poder exercer esta mesma função, também possui liberdade para implementar o banco de dados projetado, realizando testes e os devidos ajustes.

Business Intelligence (BI)

Atuando juntamente com um Cientista de Dados, o BI utiliza todas as informações repassadas por este profissional, a fim de aplicá-las na estratégia do negócio para que as tomadas de decisões obtenham maior suporte e que os resultados desejados sejam alcançados. 

Diferença entre Data Science e Big Data


É muito comum que a Data Science seja relacionada à Big Data, afinal as duas categorias lidam com a produção de dados. No entanto, existem diferenças consideráveis entre as duas profissões.

Quando pensamos em Ciência de Dados, especificamente no Cientista de Dados, é importante que a relação de funções deste profissional seja ligada à estatística, à programação e à habilidade para capturar dados de forma estratégica.

O dever do cientista é encontrar padrões nas informações analisadas, além de realizar atividades de limpeza, preparação e organização destes dados que podem ser Estruturados ou Não Estruturados.

É importante que o Cientista de Dados possua:

  • conhecimento aprofundado de SAS;

  • conhecimento em codificação Python;

  • familiaridade com a plataforma Hadoop;

  • conhecimento em Banco de dados/codificação SQL;

  • habilidade para trabalhar com dados não estruturados.

Já o Analista Big Data – palavra-chave para descrever um volume gigantesco de dados –, é responsável pela curadoria e compreensão desta geração complexa, veloz e variada de dados diários.  

Dessa forma, o objetivo do profissional Big Data é obter insights que possam ajudar as organizações a tomarem decisões melhores para seus negócios.

É importante que o Analista Big Data possua:

  • habilidades analíticas;

  • criatividade;

  • conhecimento em matemática e estatística;

  • competências empresariais;

  • conhecimento em informática.

Como funciona e quais são os impactos?


Agora que já sabemos o que é Data Science e quais são as principais funções de um profissional desta área, é hora de entendermos o funcionamento de todos os processos citados anteriormente, além de conhecer quais os impactos deste setor.

Inicialmente, é importante pensarmos que a Data Science não se limita apenas a uma análise estatística, já que esta ciência funciona como um conjunto de atividades, operações e tratamento dos dados obtidos que permitem a realização de estudos preditivos.

Dessa forma, o conhecimento sobre movimentos futuros, tendências e comportamentos podem garantir que as empresas decidam quais serão seus próximos passos de forma segura e assertiva.

Mas por onde começar?

Confira a seguir o passo a passo essencial seguido por todo Cientista de Dados:

  1. Coleta de dados

Antes mesmo de realizar a coleta de dados, o cientista propõe algumas hipóteses sobre o que espera encontrar em seus resultados.

Em seguida, a coleta acontece, onde os dados estruturados e os dados não estruturados são contabilizados.

  1. Preparação dos dados

A fase de preparação de dados ocorre logo após a coleta. Nesta etapa as inconsistências, erros de cadastro e demais possíveis problemas são observados com o intuito de garantir que uma análise bem sucedida.

  1. Análise dos dados 

Considerada como fase essencial para todo o processo, o objetivo desta etapa é observar e interpretar todas as informações coletadas.

Neste momento, é importante que o profissional encontre padrões de dados significativos para serem considerados.

  1. Entrega

Por fim, a entrega dos resultados obtidos em todo o processo deve ser realizada de maneira efetiva para que possam contribuir com a tomada de decisões empresariais.

Conclusão


A Data Science possui grande relevância no mercado atual, pois suas predições e interpretações analíticas acerca dos dados coletados são essenciais para o cotidiano de diversas corporações.

Além disso, os dados analisados são capazes de gerar insights que determinam a necessidade de se implementar novos processos em inúmeros setores de uma empresa, contribuindo assim com mudanças cada vez mais assertivas. 

Dessa forma, as corporações passaram a investir exponencialmente em Data Science e em profissionais qualificados para a área, pois a previsão de cenários do mercado a partir da coleta e análise de dados tornou-se necessária e funcional. 




O que é Data Science? O que faz um profissional da área? [Guia completo]

Entenda melhor sobre a Data Science, uma das áreas mais promissoras da atualidade

Análise de Dados: quais métricas o profissional de Dados precisa saber

Imagine um termômetro utilizado para medir a temperatura corporal de um indivíduo preocupado com sua saúde. É esse...

Nômade Digital: 10 Profissões na Área de Tecnologia para Trabalhar de Onde Quiser

Você já pensou em ser um nômade digital? Com as possibilidades atuais relacionadas ao trabalho remoto, muitos profissionais...

Data Lake e Data Warehouse: conceitos e diferenças

A gestão de dados desempenha um papel fundamental no mundo empresarial e na tomada de decisões estratégicas. Atualmente,...

Data Universe 7ª Edição: evento sobre as últimas tendências na área de Dados

Um dos nossos maiores eventos está de volta e em sua 7ª edição: o Data Universe! Um evento...
spot_img

Análise de Dados: quais métricas o profissional de Dados precisa saber

Imagine um termômetro utilizado para medir a temperatura corporal de um indivíduo preocupado com sua saúde. É esse o papel das métricas em uma...

Nômade Digital: 10 Profissões na Área de Tecnologia para Trabalhar de Onde Quiser

Você já pensou em ser um nômade digital? Com as possibilidades atuais relacionadas ao trabalho remoto, muitos profissionais estão considerando abandonar as raízes em...

Data Lake e Data Warehouse: conceitos e diferenças

A gestão de dados desempenha um papel fundamental no mundo empresarial e na tomada de decisões estratégicas. Atualmente, duas estruturas são os pilares de...

Data Universe 7ª Edição: evento sobre as últimas tendências na área de Dados

Um dos nossos maiores eventos está de volta e em sua 7ª edição: o Data Universe! Um evento 100% online e gratuito, com foco...

Análise de Dados com Python: o guia completo para iniciantes

Você já ouviu falar em análise de dados Python?  Quem trabalha com análise de dados vem percebendo nos últimos anos uma forte tendência a utilização...

O que é e como usar Query em um Banco de Dados? Aprenda os principais comandos

Você sabe o que é uma Query? De forma bem simples, podemos definir query como uma consulta de informações solicitadas a um banco de...
spot_img